Cart (Loading....) | Create Account
Close category search window
 

Independent component analysis of resting brain activity reveals transient modulation of local cortical processing by transcranial direct current stimulation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Venkatakrishnan, A. ; Grad. Program in Neurosci. & Cognitive Sci., Univ. of Maryland, College Park, MD, USA ; Contreras-Vidal, J.L. ; Sandrini, M. ; Cohen, L.G.

Neuroplasticity induced by transcranial direct current stimulation (tDCS) contributes to motor learning although the underlying mechanisms are incompletely understood. Here, we investigated the effects of tDCS on resting brain dynamics recorded by whole-head magnetoencephalography (MEG) pre- and up to 35 minutes post-tDCS or sham over the left primary motor cortex (M1) in healthy adults. Owing to superior temporal and spatial resolution of MEG, we sought to apply a robust, blind and data-driven analytic approach such as independent component analysis (ICA) and statistical clustering to these data to investigate potential neuroplastic effects of tDCS during resting state conditions. We found decreased alpha and increased gamma band power that outlasted the real tDCS stimulation period in a fronto-parietal motor network relative to sham. However, this method could not find differences between anodal and cathodal polarities of tDCS. These results suggest that tDCS over M1 modulates resting brain dynamics in a fronto-parietal motor network (that includes the stimulated location), indicative of within-network enhanced localized cortical processing.

Published in:

Engineering in Medicine and Biology Society,EMBC, 2011 Annual International Conference of the IEEE

Date of Conference:

Aug. 30 2011-Sept. 3 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.