By Topic

A 2D 3D registration with low dose radiographic system for in vivo kinematic studies

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Jerbi, T. ; Inst. Telecom/Telecom Bretagne, Cesson-Sévigné, France ; Burdin, V. ; Stindel, E. ; Roux, C.

The knowledge of the poses and the positions of the knee bones and prostheses is of a great interest in the orthopedic and biomechanical applications. In this context, we use an ultra low dose bi-planar radiographic system called EOS to acquire two radiographs of the studied bones in each position. In this paper, we develop a new method for 2D 3D registration based on the frequency domain to determine the poses and the positions during quasi static motion analysis for healthy and prosthetic knees. Data of two healthy knees and four knees with unicompartimental prosthesis performing three different poses (full extension, 30° and 60° of flexion) were used in this work. The results we obtained are in concordance with the clinical accuracy and with the accuracy reported in other previous studies.

Published in:

Engineering in Medicine and Biology Society,EMBC, 2011 Annual International Conference of the IEEE

Date of Conference:

Aug. 30 2011-Sept. 3 2011