By Topic

Instantaneous monitoring of sleep fragmentation by point process heart rate variability and respiratory dynamics

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Citi, L. ; Med. Sch., Massachusetts Gen. Hosp., Dept. of Anesthesia, Critical Care & Pain Med., Harvard Univ., Boston, MA, USA ; Bianchi, M.T. ; Klerman, E.B. ; Barbieri, R.

We present a novel, automatic point-process approach that is able to provide continuous, instantaneous estimates of heart rate variability (HRV) and respiratory sinus arrhythmia (RSA) in long duration data recordings such as those during an entire night of sleep. We analyze subjects with and without sleep apnea who underwent diagnostic polysomnography. The proposed algorithm is able to quantify multi-scale high time resolution autonomic signatures of sleep fragmentation, such as arousals and stage transitions, throughout an entire night. Results demonstrate the ability of our methods to track fast dynamic transitions from sleep to wake and between REM sleep and other sleep stages, providing resolution details not available in sleep scoring summaries. An automatic threshold-based procedure is further able to detect brief arousals, with the instantaneous indices characterizing specific arousal dynamic signatures.

Published in:

Engineering in Medicine and Biology Society, EMBC, 2011 Annual International Conference of the IEEE

Date of Conference:

Aug. 30 2011-Sept. 3 2011