By Topic

Experimental and theoretical study of an internally cooled bipolar electrode for RF coagulation of biological tissues

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Gonzalez-Suarez, A. ; Electron. Eng. Dept., Univ. Politec. de Valencia, Valencia, Spain ; Alba, J. ; Trujillo, M. ; Berjano, E.

Although some types of bipolar electrodes have been broadly employed in clinical practice to coagulate biological tissue by means of radiofrequency (RF) currents, there is still scanty available information about their electrical-thermal behaviour. We are focused on internally cooled bipolar electrodes. The goal of our study was to know more about the behavior of this kind of electrodes. For that, we planned an experimental and theoretical model. The experimental study was based on bovine hepatic ex vivo tissue and the theoretical model was based on the Finite Element Method (FEM). In order to check the feasibility of the theoretical model, we assessed both theoretically and experimentally the effect of the internal cooling characteristics of the bipolar electrode (flow rate and coolant temperature) on the impedance progress during RF heating and coagulation zone dimensions. The experimental and theoretical results were in good agreement, which suggests that the theoretical model could be useful to improve the design of cooled bipolar electrodes.

Published in:

Engineering in Medicine and Biology Society, EMBC, 2011 Annual International Conference of the IEEE

Date of Conference:

Aug. 30 2011-Sept. 3 2011