By Topic

Measuring changes in activity patterns during a norovirus epidemic at a retirement community

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Campbell, I.H. ; Biomed. Eng. Div., Oregon Health & Sci. Univ., Portland, OR, USA ; Austin, D. ; Hayes, T.L. ; Pavel, M.
more authors

Ubiquitous and unobtrusive in-home monitoring has the potential to detect physical and mental decline earlier and with higher precision than current clinical methods. However, given that this field is in its infancy, the specific metrics through which these changes are detected are not well defined. The work presented here offers room-transitions, the act of physically moving from one area of a home to another, as a quantifiable measure for total daily activity that can be inferred from a network of passive infrared sensors. We describe a method to calculate this value from raw sensor data and validate this method on an acute health event: an 18-day quarantine at a retirement community that was initiated in the midst of a norovirus outbreak. The results from this case study show that room-transition values increased significantly as subjects remained in their homes during the quarantine, demonstrating a mean increase of 12 transitions per day. Furthermore, a time-adjusted measure of room-transitions is examined that did not significantly change across the group. Finally, the healthy subjects and those that fell ill were analyzed separately, and significant differences were found between them for both the raw and time-adjusted metrics. As detection algorithms improve, these types of measures may be useful in the early detection of a change in health status.

Published in:

Engineering in Medicine and Biology Society, EMBC, 2011 Annual International Conference of the IEEE

Date of Conference:

Aug. 30 2011-Sept. 3 2011