Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 5:00 PM ET (12:00 - 21:00 UTC). We apologize for the inconvenience.
By Topic

Retrieval of land surface temperature and water vapor content from AVHRR thermal imagery using an artificial neural network

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Shunlin Liang ; Dept. of Geogr., Maryland Univ., College Park, MD, USA

AVHRR thermal imagery is sensitive to both water vapor content (WVC) and land surface temperature (LST). A new algorithm based on MODTRAN simulations and neural network regression technique for estimating WVC and LST from the two AVHRR thermal channels is developed. The Navy climatological profiles and measured atmospheric profiles from TOGA COARE upper-air sounding archive were used to simulate AVHRR channels 4 and 5 radiances with different combinations of surface temperature, emissivity, viewing zenith angle. The simulated radiances were then converted to brightness temperatures. A feedforward neural network was used to link those physical parameters with simulated brightness temperatures. This algorithm has been tested using measurements from BOREAS and HAPEX, and results indicate that this procedure performs reasonably well. The required improvements are also highlighted

Published in:

Geoscience and Remote Sensing, 1997. IGARSS '97. Remote Sensing - A Scientific Vision for Sustainable Development., 1997 IEEE International  (Volume:4 )

Date of Conference:

3-8 Aug 1997