By Topic

Particle swarm optimization-based feature selection for cognitive state detection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Firpi, H.A. ; Appl. Phys. Lab., Johns Hopkins Univ., Laurel, MD, USA ; Vogelstein, R.J.

This manuscript proposes a particle swarm-based feature extraction to monitors brain activity with the goal of identifying correlate cognitive states and intensity of a task. This in turn would allow us to develop a pattern recognition system that will classify such cognitive states and thus to redistribute the workload to other subjects. In this abstract, we present a recognition system that employ multiple features from different domains, a feature selection method using a Particle Swarm Optimization (PSO) search algorithm while the classification is provided using a k-nearest neighbor. Through this approach, we are able to achieve an averaged classification accuracy of 90.25% on held-out, cross-validated data among the eight subjects.

Published in:

Engineering in Medicine and Biology Society, EMBC, 2011 Annual International Conference of the IEEE

Date of Conference:

Aug. 30 2011-Sept. 3 2011