By Topic

Unobtrusive monitoring of the longitudinal evolution of in-home gait velocity data with applications to elder care

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Daniel Austin ; Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239 USA ; Tamara L. Hayes ; Jeffrey Kaye ; Nora Mattek
more authors

Gait velocity has repeatedly been shown to be an important indicator and predictor of both cognitive and physical function, especially in elderly. However, clinical gait assessments are conducted infrequently and cannot distinguish between abrupt changes in function and changes that occur more slowly over time. Collecting gait measurements continuously in-home has recently been proposed and validated to overcome these clinical limitations. In this paper, we describe the longitudinal analysis of in-home gait velocity collected unobtrusively from passive infrared motion sensors. We first describe a model for the probability density function of the in-home gait velocities. We then describe estimation of the evolution of the density function over time and report empirically determined algorithm parameters that have performed well over a wide variety of different gait velocity data. Finally, we demonstrate how this approach allows detection of significant events (abrupt changes in function) and slower changes over time in gait velocity data collected from a sample of two elderly subjects in the Intelligent Systems for Assessing Aging Changes (ISAAC) study.

Published in:

2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society

Date of Conference:

Aug. 30 2011-Sept. 3 2011