By Topic

Estimating fugl-meyer clinical scores in stroke survivors using wearable sensors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Del Din, S. ; Med. Sch., Dept. of Phys. Med. & Rehabilitation, Harvard Univ., Boston, MA, USA ; Patel, S. ; Cobelli, C. ; Bonato, P.

Clinical assessment scales to evaluate motor abilities in stroke survivors could be used to individualize rehabilitation interventions thus maximizing motor gains. Unfortunately, these scales are not widely utilized in clinical practice because their administration is excessively time-consuming. Wearable sensors could be relied upon to address this issue. Sensor data could be unobtrusively gathered during the performance of motor tasks. Features extracted from the sensor data could provide the input to models designed to estimate the severity of motor impairments and functional limitations. In previous work, we showed that wearable sensor data collected during the performance of items of the Wolf Motor Function Test (a clinical scale designed to assess functional capability) can be used to estimate scores derived using the Functional Ability Scale, a clinical scale focused on quality of movement. The purpose of the study herein presented was to investigate whether the same dataset could be used to estimate clinical scores derived using the Fugl-Meyer Assessment scale (a clinical scale designed to assess motor impairments). Our results showed that Fugl-Meyer Assessment Test scores can be estimated by feeding a Random Forest with features derived from wearable sensor data recorded during the performance of as few as a single item of the Wolf Motor Function Test. Estimates achieved using the proposed method were marked by a root mean squared error as low as 4.7 points of the Fugl-Meyer Assessment Test scale.

Published in:

Engineering in Medicine and Biology Society, EMBC, 2011 Annual International Conference of the IEEE

Date of Conference:

Aug. 30 2011-Sept. 3 2011