By Topic

Modeling the internal pressure dependence of thermal conductivity and in vitro temperature measurement for lung RFA

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Yamazaki, N. ; Grad. Sch. of Sci. & Eng., Waseda Univ., Tokyo, Japan ; Watanabe, H. ; Seki, M. ; Hoshi, T.
more authors

Radio frequency ablation (RFA) for lung cancer has increasingly been used over the past few years because RFA is minimally invasive treatment for patients. As a feature of RFA for the lung cancer, lung has the air having low thermal conductivity. Therefore, RFA for lung has the advantage that only the tumor is coagulated because heating area is confined to the immediate vicinity of the heating point. However, it is difficult for operators to control the precise formation of coagulation zones due to inadequate imaging modalities. We propose a method using numerical simulation to analyze the temperature distribution of the organ in order to overcome the current deficiencies. Creating an accurate thermophysical model was a challenging problem because of the complexities of the thermophysical properties of the organ. In this work, as the processes in the development of ablation simulator, measurement of the pressure dependence of lung thermal conductivity and in vitro estimation of the temperature distribution during RFA is presented.

Published in:

Engineering in Medicine and Biology Society,EMBC, 2011 Annual International Conference of the IEEE

Date of Conference:

Aug. 30 2011-Sept. 3 2011