By Topic

Fuzzy approach toward reducing false positives in the detection of small multiple sclerosis lesions in magnetic resonance images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
F. X. Aymerich ; Magnetic Resonance Unit - IDI, Vall Hebron University Hospital, E-08035 Barcelona, Spain ; P. Sobrevilla ; E. Montseny ; A. Rovira

The large number of false positives that result when automatic algorithms are considered for segmenting small multiple sclerosis lesions in magnetic resonance imaging hampers the posterior evaluation of lesion load. To address this problem we propose a fuzzy system which can improve the differentiation between true and false positive detections in proton density- and T2-weighted images. On the basis of an earlier work, which was focused on the detection of hyperintense regions in MR brain images, the system here presented introduces fuzzy restrictions derived from the regional analysis of the main features in such regions. Results show a reduction to a 3.6% in the number of false detections while preserving most of the true detections obtained using previous algorithm.

Published in:

2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society

Date of Conference:

Aug. 30 2011-Sept. 3 2011