By Topic

Hybrid cosine and Radon transform-based processing for digital mammogram feature extraction and classification with SVM

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Lahmiri, S. ; Dept. of Comput. Sci., Univ. of Quebec at Montreal, Montréal, QC, Canada ; Boukadoum, M.

A new methodology to automatically extract features from mammograms and classify them is presented. It relies on a hybrid processing system that sequentially uses the discrete cosine transform (DCT) to obtain the high frequency component of the mammogram and then applies the Radon transform to the obtained DCT image in order to extract its directional features. The features are subsequently fed to a support vector machine for classification. The approach was tested on a database of one hundred images and shows improved classification accuracy in comparison to using the discrete cosine transform or the Radon transform alone, as done in others works.

Published in:

Engineering in Medicine and Biology Society, EMBC, 2011 Annual International Conference of the IEEE

Date of Conference:

Aug. 30 2011-Sept. 3 2011