By Topic

Algorithms for characterizing brain metabolites in two-dimensional in vivo MR correlation spectroscopy

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Cocuzzo, D. ; Charles Stark Draper Lab., Cambridge, MA, USA ; Lin, A. ; Ramadan, S. ; Mountford, C.
more authors

Traditional analyses of in vivo 1D MR spectroscopy of brain metabolites have been limited to the inspection of one-dimensional free induction decay (FID) signals from which only a limited number of metabolites are clearly observable. In this article we introduce a novel set of algorithms to process and characterize two-dimensional in vivo MR correlation spectroscopy (2D COSY) signals. 2D COSY data was collected from phantom solutions of topical metabolites found in the brain, namely glutamine, glutamate, and creatine. A statistical peak-detection and object segmentation algorithm is adapted for 2D COSY signals and applied to phantom solutions containing varied concentrations of glutamine and glutamate. Additionally, quantitative features are derived from peak and object structures, and we show that these measures are correlated with known phantom metabolite concentrations. These results are encouraging for future studies focusing on neurological disorders that induce subtle changes in brain metabolite concentrations and for which accurate quantitation is important.

Published in:

Engineering in Medicine and Biology Society,EMBC, 2011 Annual International Conference of the IEEE

Date of Conference:

Aug. 30 2011-Sept. 3 2011