Cart (Loading....) | Create Account
Close category search window
 

Sparse MEG source imaging in Landau-Kleffner syndrome

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Min Zhu ; Sch. of Electr. & Comput. Eng., Univ. of Oklahoma, Norman, OK, USA ; Wenbo Zhang ; Dickens, D. ; Lei Ding

Epilepsy patients with Landau-Kleffner syndrome (LKS) usually have a normal brain structure, which makes it a challenge to identify the epileptogenic zone only based on magnetic resonance imaging (MRI) data. A sparse source imaging technique called variation based sparse cortical current density (VB-SCCD) imaging was adopted here to reconstruct cortical sources of magnetoencephalography (MEG) interictal spikes from an LKS patient. Realistic boundary element (BE) head and cortex models were built by segmenting structural MRI. 148-channel MEG was recorded for 10 minutes between seizures. Total 29 epileptiform spikes were selected for analysis. The primary cortical sources were observed locating at the left intra- and perisylvian cortex. Multiple extrasylvian sources were identified as the secondary sources. The spatio-temporal patterns of cortical sources provide more insights about the neuronal synchrony and propagation of epileptic discharges. Our observations were consistent with presurgical diagnosis for this patient and observation of aphasia in LKS. The present results suggest that the promising of VB-SCCD technique in assisting with presurgical planning and studying the neural network for LKS in determining the lateralization of epileptic origins. It can further be applied to non-invasively localize and/or lateralize eloquent cortex for language for epilepsy patients in general in the future.

Published in:

Engineering in Medicine and Biology Society,EMBC, 2011 Annual International Conference of the IEEE

Date of Conference:

Aug. 30 2011-Sept. 3 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.