By Topic

Designing an active motor skill learning platform with a robot-assisted laparoscopic trainer

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Chun Siong Lee ; Department of Mechanical Engineering, National University of Singapore ; Liangjing Yang ; Tao Yang ; Chee Kong Chui
more authors

Laparoscopic Surgery poses significant complexity in hand-eye coordination to the surgeon. In order to improve their proficiency beyond the limited exposure in the operating theatre, surgeons need to practice on laparoscopic trainers. We have constructed a robotic laparoscopic trainer with identical degrees of freedom and range of motion as a conventional laparoscopic instrument. We hypothesize that active robotic assistance through a laparoscopic trainer improves training efficacy as compared to autonomous practice. In order to test the hypothesis, we have divided the subjects into two groups. The control group practiced on two laparoscopic tasks manually without feedback or supervision. The other group practiced on the same tasks with robotic assistance. Results from the robot-assisted group show that tool orientation (pitch and yaw joint motion) in the pointing task improved by more than 15%.

Published in:

2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society

Date of Conference:

Aug. 30 2011-Sept. 3 2011