Scheduled System Maintenance:
On Wednesday, July 29th, IEEE Xplore will undergo scheduled maintenance from 7:00-9:00 AM ET (11:00-13:00 UTC). During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Modeling two-photon calcium fluorescence of episodic V1 recordings using multifrequency analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Zheng, H.W. ; Yale Univ., New Haven, CT, USA ; Malik, W.Q. ; Runyan, C.A. ; Sur, M.
more authors

The use of two-photon microscopy allows for imaging of deep neural tissue in vivo. This paper examines frequency-based analysis to two-photon calcium fluorescence images with the goal of deriving smooth tuning curves. We present a multifrequency analysis approach for improved extraction of calcium responses in episodic stimulation experiments, that is, when the stimulus is applied for a number of frames, then turned off for the next few frames, and so on. Episodic orientation stimulus was applied while recording from the primary visual cortex of an anesthetized mouse. The multifrequency model demonstrated improved tuning curve descriptions of the neurons. It also offers perspective regarding the characteristics of calcium fluorescence imaging of the brain.

Published in:

Engineering in Medicine and Biology Society, EMBC, 2011 Annual International Conference of the IEEE

Date of Conference:

Aug. 30 2011-Sept. 3 2011