By Topic

Binary particle swarm optimization for feature selection in detection of infants with hypothyroidism

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Zabidi, A. ; Fac. of Electr. Eng., Univ. Teknol. Mara, Shah Alam, Malaysia ; Khuan, L.Y. ; Mansor, W. ; Yassin, I.M.
more authors

Hypothyroidism in infants is caused by the insufficient production of hormones by the thyroid gland. Due to stress in the chest cavity as a result of the enlarged liver, their cry signals are unique and can be distinguished from the healthy infant cries. This study investigates the effect of feature selection with Binary Particle Swarm Optimization on the performance of MultiLayer Perceptron classifier in discriminating between the healthy infants and infants with hypothyroidism from their cry signals. The feature extraction process was performed on the Mel Frequency Cepstral coefficients. Performance of the MLP classifier was examined by varying the number of coefficients. It was found that the BPSO enhances the classification accuracy while reducing the computation load of the MLP classifier. The highest classification accuracy of 99.65% was achieved for the MLP classifier, with 36 filter banks, 5 hidden nodes and 11 BPS optimised MFC coefficients.

Published in:

Engineering in Medicine and Biology Society,EMBC, 2011 Annual International Conference of the IEEE

Date of Conference:

Aug. 30 2011-Sept. 3 2011