By Topic

In-cycle myocardium tissue electrical impedance monitoring using broadband impedance spectroscopy

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Sanchez, B. ; Dept. of Electr. Eng., Tech. Univ. of Catalonia (UPC), Barcelona, Spain ; Vandersteen, G. ; Rosell-Ferrer, J. ; Cinca, J.
more authors

Measurements of myocardium tissue impedance during the cardiac cycle have information about the morphology of myocardium cells as well as cell membranes and intra/extra cellular spaces. Although the variation with time of the impedance cardiac signal has information about the myocardium tissue activity during the cardiac cycle, this information has been usually underestimated in the studies based on frequency-sweep Electrical Impedance Spectroscopy (EIS) technique. In these cases, the dynamic behavior was removed from the impedance by means of averaging. The originality of this research is to show the time evolution of in-vivo healthy myocardium tissue impedance during the cardiac cycle, being measured with a multisine excitation at 26 frequencies (1 kHz-1 MHz). The obtained parameters from fitting data to a Cole model are valid indicators to explain the time relation of the systolic and diastolic function with respect to the myocardium impedance time variation. This paper presents a successful application of broadband Impedance Spectroscopy for time-varying impedance monitoring. Furthermore, it can be extended to understand various unsolved problems in a wide range of biomedical and electrochemical applications, where the system dynamics are intended to be studied.

Published in:

Engineering in Medicine and Biology Society, EMBC, 2011 Annual International Conference of the IEEE

Date of Conference:

Aug. 30 2011-Sept. 3 2011