Cart (Loading....) | Create Account
Close category search window

Effect of respiratory modulation on relationship between heart rate variability and motion sickness

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Chin-Teng Lin ; Brain Res. Center, Nat. Chiao-Tung Univ., Hsinchu, Taiwan ; Chun-Ling Lin ; Tzai-Wen Chiu ; Jeng-Ren Duann
more authors

This study investigates the interplay among heart rate variability (HRV), respiration, and the severity of motion sickness (MS) in a realistic passive driving task. Although HRV is a commonly used metrically in physiological research or even believed to be a direct measure of sympathovagal activities, the results of MS-effected HRV remain mixed across studies. The goal of this study is to find the source of these contradicting results of HRV associated with MS. Experimental results of this study showed that the group trend of the low-frequency (LF) component and the LF/HF ratio increased and high-frequency (HF) component decreased significantly as self-reported MS level increased (p<;0.001), consistent with a perception-driven autonomic response of the cardiovascular system. However, in one of the subjects, the relationship was reversed when individuals intentionally adjust themselves (deep breathing) to relieve the discomfort of MS during the experiments. It appears that the correlations between HRV and MS level were higher when individuals made fewer adjustments (the number of deep breathing) during the passive driving experiments.

Published in:

Engineering in Medicine and Biology Society,EMBC, 2011 Annual International Conference of the IEEE

Date of Conference:

Aug. 30 2011-Sept. 3 2011

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.