Cart (Loading....) | Create Account
Close category search window
 

Fluorescence-based system for measurement of electrophysiological changes in stretched cultured cardiomyocytes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Duverger, James E. ; Montreal Heart Institute, Montreal (Quebec), Canada ; Beland, Jonathan ; Maguy, Ange ; Adegbindin, Mouhamed M.
more authors

Acute or sustained stretch of cardiac tissue is known to play a key role in arrhythmogenesis. Using a fluorescence approach, we designed a system measuring calcium transients and transmembrane potential changes in monolayers of cultured cardiomyocytes under uniaxial elongation and electrical stimulation. Cardiac myocytes are seeded on a rectangular PDMS template held and stretched by a motorized linear guide system. Electrical stimulation is performed with two parallel carbon electrodes supplied by amplified pulses from a digital-to-analog converter. The cells are stained with either voltage- or calcium-sensitive dye (di-4-ANEPPS and Fluo-4 AM respectively). The two available excitation light sources are both current-controlled LED arrays (λ = 523 ± 45nm for di-4-ANEPPS and λ = 505 ± 15nm for Fluo-4 AM). The filtered emitted fluorescence (λ > 610nm for di-4-ANEPPS and λ = 535 ± 25nm for Fluo-4 AM) is transduced to current with a photodiode, converted to amplified voltage signals and digitized. The design and preliminary validation results are presented.

Published in:

Engineering in Medicine and Biology Society,EMBC, 2011 Annual International Conference of the IEEE

Date of Conference:

Aug. 30 2011-Sept. 3 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.