By Topic

Using photonic crystal enhanced fluorescence on quartz substrates to improve the sensitivity of DNA microarrays

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Sherine George ; Department of Bioengineering and the Department of Physics, respectively, at the University of Illinois at Urbana Champaign (UIUC), IL 61801, USA ; Anusha Pokhriyal ; Sarah I. Jones ; Meng Lu
more authors

Gene expression analysis of low abundance genes remains difficult when DNA microarrays are performed on standard glass substrates. However, we have shown that by using photonic crystals (PC) made on quartz substrates, the fluorescence intensity of Cyanine-5 (Cy5) labeled microarray spots is greatly enhanced. In a 1-color microarray experiment studying gene expression of soybean cotyledon tissue, an average signal enhancement factor of 17.8× was observed on the PC. Furthermore, twice as many genes were detectable on these PCs as compared to glass. By improving the sensitivity of this fluorescent assay, low expression genes that were undetectable on glass were quantified on the PC.

Published in:

2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society

Date of Conference:

Aug. 30 2011-Sept. 3 2011