By Topic

Rough-Fuzzy Hybrid Approach for Identification of Bio-markers and Classification on Alzheimer's Disease Data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
ChangSu Lee ; Sch. of Comput. & Security Sci., Edith Cowan Univ., Mount Lawley, WA, Australia ; Chiou-Peng Lam ; Masek, M.

A new approach is proposed in this paper for identification of biomarkers and classification on Alzheimer's disease data by employing a rough-fuzzy hybrid approach called ARFIS (a framework for Adaptive TS-type Rough-Fuzzy Inference Systems). In this approach, the entropy-based discretization technique is employed first on the training data to generate clusters for each attribute with respect to the output information. The rough set-based feature reduction method is then utilized to reduce the number of features in a decision table obtained using the cluster information. Another rough set-based approach is employed for the generation of decision rules. After the construction and the evaluation phases of the proposed rough-fuzzy hybrid system, the classification is carried out on the testing set of the given data. The experimental results showed that the proposed approach achieved compatible classification results on Alzheimer's disease data compared to results from other existing approaches in the literature. It can be concluded that the proposed rough-fuzzy hybrid approach is a novel approach in predictive data mining in clinical medicine in terms of utilizing 1) rough set-based approaches for feature reduction and rule generation, 2) a hybrid fuzzy system for pattern classification, and revealing 3) rules for prediction of diagnostic results.

Published in:

Bioinformatics and Bioengineering (BIBE), 2011 IEEE 11th International Conference on

Date of Conference:

24-26 Oct. 2011