By Topic

Design and modelling of an impedance-based MEMS biosensor

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Nadira Jamil ; Department of Electrical and Computer Engineering, International Islamic ; Anis Nurashikin Nordin ; Ioana Voiculescu

This paper present the preliminary design of a micro-electromechanical system (MEMS) surface acoustic wave (SAW) resonator as a biosensor using COMSOL. The biosensor consists of a SAW resonator which utilizes mechanical acoustic waves as its sensing mechanism. The preliminary study was performed to verify the functionality and obtain the optimal design parameters for detection of biological cells. Placement of the cells at the centre of the device will load the acoustic waves, resulting in a damped and slower electrical signal. Our design aims to defeat limitations of the current biosensor in terms of cost, size and most important the speed of analysis. Impedance-based MEMS biosensor has the ability to monitor the cell response to electricity flow. A two dimensional finite element model (FEM) was created using COMSOL Multiphysics 3.5a to observe the change in impedance of the device model.

Published in:

Micro and Nanoelectronics (RSM), 2011 IEEE Regional Symposium on

Date of Conference:

28-30 Sept. 2011