Scheduled System Maintenance:
Some services will be unavailable Sunday, March 29th through Monday, March 30th. We apologize for the inconvenience.
By Topic

Impact of Oxygen Flow Rate on the Instability Under Positive Bias Stresses in DC-Sputtered Amorphous InGaZnO Thin-Film Transistors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

14 Author(s)
Sungchul Kim ; Sch. of Electr. Eng., Kookmin Univ., Seoul, South Korea ; Yong Woo Jeon ; Yongsik Kim ; Dongsik Kong
more authors

The effect of O2 flow rate (OFR) during channel deposition is investigated on the electrical instability of the amorphous indium-gallium-zinc oxide (a-IGZO) thin-film transistors (TFTs) under positive gate bias stresses. From the transfer curves measured before and after bias stresses, we can observe that the high OFR degrades the electrical stability and causes the large threshold voltage shift (ΔVT) in a-IGZO TFTs. To elucidate the origin of the observed phenomenon, we extract and compare the subgap density of states (DOS) in devices with various OFRs. The extracted DOS shows that the subgap states become higher with the increase of OFR in a wide range of bandgap, and the enhanced electron trapping due to the increased number of trap states is considered as the cause of larger ΔVT in higher OFR devices.

Published in:

Electron Device Letters, IEEE  (Volume:33 ,  Issue: 1 )