By Topic

Enhanced Detection Using Target Polarization Signatures in Through-the-Wall Radar Imaging

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Christian Debes ; AGT Group (R&D) GmbH, Darmstadt, Germany ; Abdelhak M. Zoubir ; Moeness G. Amin

We consider the problem of through-the-wall radar imaging (TWRI), in which polarimetric imaging is used for automatic target detection. Two generalized statistical detectors are proposed which perform joint detection and fusion of a set of multipolarization radar images. The first detector is an extension of a previously proposed iterative target detector for multiview TWRI. This extension allows the detector to automatically adapt to statistics that may vary, depending on target locations and electromagnetic-wave polarizations. The second detector is based on Bayes' test and is of interest when target pixel occupancies are known from, e.g., secondary data. Properties of the proposed detectors are delineated and demonstrated by real data measurements using wideband sum-and-delay beamforming, acquired in a semicontrolled lab environment. We examine the performance of the proposed detectors when imaging both metal objects and humans.

Published in:

IEEE Transactions on Geoscience and Remote Sensing  (Volume:50 ,  Issue: 5 )