Scheduled System Maintenance:
Some services will be unavailable Sunday, March 29th through Monday, March 30th. We apologize for the inconvenience.
By Topic

Optimal Node Hardware Module Planning for Layer-One Optical Transport Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Gangxiang Shen ; Sch. of Electron. & Inf. Eng., Soochow Univ., Suzhou, China ; Peng, L. ; Yunfeng Shen ; Sardesai, H.P.

Most of the existing studies on traffic grooming focus on minimizing required network link capacity and providing a serving relationship between client services and link capacity. Subsequent to this step, it is important to plan for actual client service add/drop over client service ports and end-to-end lightpath establishment over network ports, which is, however, not well investigated. We call such an effort node hardware module planning. This is an industrially practical problem aiming to minimize the node hardware cost since hardware modules are usually the most expensive in a network. Based on a link-based traffic grooming result, we develop a mixed integer linear programming (MILP) model to optimally plan hardware modules. To overcome the computational difficulty of the MILP model under large-size planning scenarios, we also develop a fast suboptimal heuristic for hardware module planning. Simulation studies indicate that the heuristic is efficient to realize a design close to an optimal solution obtained by the MILP model for both of the single-hop and multi-hop grooming modes. Also, the multi-hop grooming mode requires not only fewer link capacity units than the single-hop mode as found in most of the existing studies, but also lower node hardware costs. Finally, the evaluation of the impact of the switch backplane size shows that given a certain set of hardware modules, a saturated switch backplane size exists after which a further increase of the backplane size will not bring further reduction of the network hardware cost.

Published in:

Optical Communications and Networking, IEEE/OSA Journal of  (Volume:3 ,  Issue: 12 )