By Topic

Thermal–Electromagnetic Analysis for Driving Cycles of Embedded Flux-Switching Permanent-Magnet Motors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Guangjin Li ; Systèmes et Applications des Technologies de l'Information et de l'Energie, Ecole Normale Supérieure de Cachan, Centre National de la Recherche Scientifique, Cachan, France ; Javier Ojeda ; Emmanuel Hoang ; Mohamed Gabsi
more authors

This paper presents a fast and precise electromagnetic-thermal model of a redundant dual-star flux-switching permanent-magnet (FSPM) motor for embedded applications with driving cycles, e.g., hybrid electrical vehicle (HEV) and aerospace. This model is based on a prior steady characterization by finite-element method (FEM) 2-D of the FSPM motor via calculating the instantaneous torque and the normal and tangential components of the magnetic flux density (Br and Bθ) of each element of the stator and the rotor for different root-mean-square (RMS) current densities and different rotor positions. These results are then used in the analytical copper and iron loss models for calculating the instantaneous copper and rotor and stator iron losses during one driving cycle. The lumped-parameter (LP) and finite-element 2-D transient thermal models are then carried out, in which the previously obtained instantaneous power losses are used as heat sources for calculating the temperatures of different motor parts during driving cycles. In the thermal studies, a transformation of an irregular slot structure into a regular (rectangular) one is applied to simplify the calculation of the winding thermal resistance. The thermal-electromagnetic analysis method in this paper can also be extended for all the other applications with driving cycles. The experimental tests are carried out to validate the analytical and numerical results.

Published in:

IEEE Transactions on Vehicular Technology  (Volume:61 ,  Issue: 1 )