By Topic

Target Detection and Classification Using Seismic and PIR Sensors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Xin Jin ; Department of Mechanical Engineering, Pennsylvania State University, University Park, PA, USA ; Soumalya Sarkar ; Asok Ray ; Shalabh Gupta
more authors

Unattended ground sensors (UGS) are widely used to monitor human activities, such as pedestrian motion and detection of intruders in a secure region. Efficacy of UGS systems is often limited by high false alarm rates, possibly due to inadequacies of the underlying algorithms and limitations of onboard computation. In this regard, this paper presents a wavelet-based method for target detection and classification. The proposed method has been validated on data sets of seismic and passive infrared sensors for target detection and classification, as well as for payload and movement type identification of the targets. The proposed method has the advantages of fast execution time and low memory requirements and is potentially well-suited for real-time implementation with onboard UGS systems.

Published in:

IEEE Sensors Journal  (Volume:12 ,  Issue: 6 )