Cart (Loading....) | Create Account
Close category search window
 

Probabilistic Motion Diffusion of Labeling Priors for Coherent Video Segmentation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Tinghuai Wang ; Centre for Vision, Speech & Signal Process., Univ. of Surrey, Guildford, UK ; Collomosse, J.

We present a robust algorithm for temporally coherent video segmentation. Our approach is driven by multi-label graph cut applied to successive frames, fusing information from the current frame with an appearance model and labeling priors propagated forwarded from past frames. We propagate using a novel motion diffusion model, producing a per-pixel motion distribution that mitigates against cumulative estimation errors inherent in systems adopting “hard” decisions on pixel motion at each frame. Further, we encourage spatial coherence by imposing label consistency constraints within image regions (super-pixels) obtained via a bank of unsupervised frame segmentations, such as mean-shift. We demonstrate quantitative improvements in accuracy over state-of-the-art methods on a variety of sequences exhibiting clutter and agile motion, adopting the Berkeley methodology for our comparative evaluation.

Published in:

Multimedia, IEEE Transactions on  (Volume:14 ,  Issue: 2 )

Date of Publication:

April 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.