Cart (Loading....) | Create Account
Close category search window
 

A Linear Dynamical System Framework for Salient Motion Detection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Gopalakrishnan, V. ; Center for Multimedia & Network Technol., Nanyang Technol. Univ., Singapore, Singapore ; Rajan, D. ; Yiqun Hu

Detection of salient motion in a video involves determining which motion is attended to by the human visual system in the presence of background motion that consists of complex visuals that are constantly changing. Salient motion is marked by its predictability compared to the more complex unpredictable motion of the background such as fluttering of leaves, ripples in water, dispersion of smoke, and others. We introduce a novel approach to detect salient motion based on the concept of “observability” from the output pixels, when the video sequence is represented as a linear dynamical system. The group of output pixels with maximum saliency is further used to model the holistic dynamics of the salient region. The pixel saliency map is bolstered by two region-based saliency maps, which are computed based on the similarity of dynamics of the different spatiotemporal patches in the video with the salient region dynamics, in a global as well as a local sense. The resulting algorithm is tested on a set of challenging sequences and compared to state-of-the-art methods to showcase its superior performance on grounds of its computational efficiency and ability to detect salient motion.

Published in:

Circuits and Systems for Video Technology, IEEE Transactions on  (Volume:22 ,  Issue: 5 )

Date of Publication:

May 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.