Cart (Loading....) | Create Account
Close category search window
 

Probabilistic Analysis of Small-Signal Stability of Large-Scale Power Systems as Affected by Penetration of Wind Generation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Bu, S.Q. ; Sch. of Electron., Electr. Eng. & Comput. Sci., Queen''s Univ. of Belfast, Belfast, UK ; Du, W. ; Wang, H.F. ; Chen, Z.
more authors

This paper proposes a method of probabilistic analysis to investigate the impact of stochastic uncertainty of grid-connected wind generation on power system small-signal stability. The proposed method is “analytical” in contrast to the numerical method of Monte Carlo simulation which relies on large number of random computations. It can directly calculate the probabilistic density function (PDF) of critical eigenvalues of a large-scale power system from the PDF of grid-connected multiple sources of wind power generation, thus to determine the probabilistic small-signal stability of the power system as affected by the wind generation. In the paper, an example of 16-machine power system with three grid-connected wind farms is used to demonstrate the application of the proposed method. The results of probabilistic stability analysis of the example power system are confirmed by the Monte Carlo simulation. It is shown that the stochastic variation of grid-connected wind generation can cause the system to lose stability even though the system is stable deterministically. The higher the level of wind penetration is, the more the probability that the system becomes unstable could be. Hence indeed penetration of stochastically variable wind generation threatens stable operation of power systems as far as system small-signal stability is concerned.

Published in:

Power Systems, IEEE Transactions on  (Volume:27 ,  Issue: 2 )

Date of Publication:

May 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.