By Topic

Compact Millimeter-Wave Sensor for Remote Monitoring of Vital Signs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Bakhtiari, S. ; Nucl. Eng. Div., Argonne Nat. Lab., Lemont, IL, USA ; Elmer, T.W. ; Cox, N.M. ; Gopalsami, N.
more authors

A compact millimeter-wave (MMW) sensor has been developed for remote monitoring of human vital signs (heart and respiration rate). The low-power homodyne transceiver operating at 94 GHz was assembled by using solid-state active and passive block-type components and can be battery operated. A description of the MMW system front end and the back-end acquisition hardware and software is presented. Representative test case results on the application of various signal processing and data analysis algorithms developed to extract faint physiological signals of interest in presence of strong background interference are provided. Although the laboratory experiments so far have been limited to standoff distances of up to 15 m, the upper limit of the detection range is expected to be higher. In comparison with its microwave counterparts, the MMW system described here provides higher directivity, increased sensitivity, and longer detection range for measuring subtle mechanical displacements associated with heart and respiration functions. The system may be adapted for use in a wide range of standoff sensing applications including for patient health care, structural health monitoring, nondestructive testing, biometric sensing, and remote vibrometry in general.

Published in:

Instrumentation and Measurement, IEEE Transactions on  (Volume:61 ,  Issue: 3 )