By Topic

First Demonstration of a 10-Gb/s RZ End-to-End Four-Wave-Mixing Based Link at 1884 nm Using Silicon Nanowaveguides

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)
Ophir, N. ; Dept. of Electr. Eng., Columbia Univ., New York, NY, USA ; Lau, R.K.W. ; Menard, M. ; Salem, R.
more authors

We demonstrate a double-stage four-wave mixing (FWM) scheme in silicon nanowaveguides which allows effective optical time-division-multiplexed data generation and reception in the 2-μm region. The scheme is based on a first mixing stage which unicasts a high-speed return-to-zero stream from the C-band to 1884-nm, followed by a second mixing stage which wavelength converts the data from 1884-nm down to the O-band for detection. The 10-Gb/s data traverses an aggregate record distance of 909 nm in the cascaded wavelength-conversion and unicast stages, with a power penalty of 2.5 dB. This scheme effectively overcomes the lack of commercially-available high-performance sources and receivers at 2 μm by relying on telecommunication band components along with ultrabroad FWM silicon devices.

Published in:

Photonics Technology Letters, IEEE  (Volume:24 ,  Issue: 4 )