By Topic

Global and Local Virtual Metrology Models for a Plasma Etch Process

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Shane A. Lynn ; Department of Electrical Engineering, National University of Ireland, Maynooth, Kildare, Ireland ; John Ringwood ; Niall MacGearailt

Virtual metrology (VM) is the estimation of metrology variables that may be expensive or difficult to measure using readily available process information. This paper investigates the application of global and local VM schemes to a data set recorded from an industrial plasma etch chamber. Windowed VM models are shown to be the most accurate local VM scheme, capable of producing useful estimates of plasma etch rates over multiple chamber maintenance events and many thousands of wafers. Partial least-squares regression, artificial neural networks, and Gaussian process regression are investigated as candidate modeling techniques, with windowed Gaussian process regression models providing the most accurate results for the data set investigated.

Published in:

IEEE Transactions on Semiconductor Manufacturing  (Volume:25 ,  Issue: 1 )