By Topic

Data-Based Controllability and Observability Analysis of Linear Discrete-Time Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Zhuo Wang ; Key Lab. of Intell. Control & Manage. of Complex Syst., Inst. of Autom., Beijing, China ; Derong Liu

In this brief, we develop data-based methods for analyzing the controllability and observability of linear discrete-time systems which have unknown system parameters. These data-based methods will only use measured data to construct the controllability matrix as well as the observability matrix, in order to verify the corresponding properties. The advantages of our methods are threefold. First, they can directly verify system properties based on measured data without knowing system parameters. Second, our calculation precision is higher than traditional approaches, which need to identify the unknown parameters. Third, our methods have lower computational complexities when constructing the controllability and observability matrices.

Published in:

IEEE Transactions on Neural Networks  (Volume:22 ,  Issue: 12 )