By Topic

Functional Properties of Minimum Mean-Square Error and Mutual Information

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yihong Wu ; Dept. of Electr. Eng., Princeton Univ., Princeton, NJ, USA ; Verdu, S.

In addition to exploring its various regularity properties, we show that the minimum mean-square error (MMSE) is a concave functional of the input-output joint distribution. In the case of additive Gaussian noise, the MMSE is shown to be weakly continuous in the input distribution and Lipschitz continuous with respect to the quadratic Wasserstein distance for peak-limited inputs. Regularity properties of mutual information are also obtained. Several applications to information theory and the central limit theorem are discussed.

Published in:

Information Theory, IEEE Transactions on  (Volume:58 ,  Issue: 3 )