By Topic

Impact of Device Parameters on Thermal Performance of High-Speed Oxide-Confined 850-nm VCSELs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Baveja, P.P. ; Inst. of Opt., Univ. of Rochester, Rochester, NY, USA ; Kogel, B. ; Westbergh, P. ; Gustavsson, J.S.
more authors

We study the impact of device parameters, such as inner-aperture diameter and cavity photon lifetime, on thermal rollover mechanisms in 850-nm, oxide-confined, vertical-cavity surface-emitting lasers (VCSELs) designed for high-speed operation. We perform measurements on four different VCSELs of different designs and use our empirical thermal model for calculating the power dissipated with increasing bias currents through various physical processes such as absorption within the cavity, carrier thermalization, carrier leakage, spontaneous carrier recombination, and Joule heating. When reducing the top mirror reflectivity to reduce internal optical absorption loss we find an increase of power dissipation due to carrier leakage. There is therefore a trade-off between the powers dissipated owing to optical absorption and carrier leakage in the sense that overcompensating for optical absorption enhances carrier leakage (and vice versa). We further find that carrier leakage places the ultimate limit on the thermal performance for this entire class of devices. Our analysis yields useful design optimization strategies for mitigating the impact of carrier leakage and should thereby prove useful for the performance enhancement of 850-nm, high-speed, oxide-confined VCSELs.

Published in:

Quantum Electronics, IEEE Journal of  (Volume:48 ,  Issue: 1 )