By Topic

A comparative study of supervised learning techniques for data-driven haptic simulation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Wael Abdelrahman ; Center for Intelligent Systems Research, Deakin University, Australia ; Sara Farag ; Saeid Nahavandi ; Douglas Creighton

This paper focuses on the choice of a supervised learning algorithm and possible data preprocessing in the domain of data-driven haptic simulation. This is done through a comparison of the performance of different supervised learning techniques with and without data preprocessing. The simulation of haptic interactions with deformable objects using data-driven methods has emerged as an alternative to parametric methods. The accuracy of the simulation depends on the empirical data and the learning method. Several methods were suggested in the literature and here we provide a comparison between their performance and applicability to this domain. We selected four examples to be compared: singular learning mechanism which is artificial neural networks (ANN), attribute selection followed by ANN learning process, ensemble of multiple learning techniques, and attribute selection followed by the learning ensemble. These methods performance was compared in the domain of simulating multiple interactions with a deformable object with nonlinear material behavior.

Published in:

Systems, Man, and Cybernetics (SMC), 2011 IEEE International Conference on

Date of Conference:

9-12 Oct. 2011