By Topic

Human action recognition based on Pyramid Histogram of Oriented Gradients

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Jin Wang ; Inst. for Technol. Res. & Innovation, Deakin Univ., Geelong, VIC, Australia ; Ping Liu ; She, M.F.H. ; Kouzani, A.
more authors

Human action recognition has been attracted lots of interest from computer vision researchers due to its various promising applications. In this paper, we employ Pyramid Histogram of Orientation Gradient (PHOG) to characterize human figures for action recognition. Comparing to silhouette-based features, the PHOG descriptor does not require extraction of human silhouettes or contours. Two state-space models, i.e., Hidden Markov Model (HMM) and Conditional Random Field (CRF), are adopted to model the dynamic human movement. The proposed PHOG descriptor and the state-space models with respect to different parameters are tested using a standard dataset. We also testify the robustness of the method with respect to various unconstrained conditions and viewpoints. Promising experimental result demonstrates the effectiveness and robustness of our proposed method.

Published in:

Systems, Man, and Cybernetics (SMC), 2011 IEEE International Conference on

Date of Conference:

9-12 Oct. 2011