By Topic

A soft unsupervised two-phase image segmentation model based on global probability density functions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Borges, V.R.P. ; Comput. Fac., Fed. Univ. of Uberlandia, Uberlandia, Brazil ; Batista, M.A. ; Barcelos, C.

In this paper, we propose an unsupervised variational two-phase image segmentation model based on Fuzzy Region Competition. This model uses probability density functions to design image regions and to set a homogeneity criterion for the competition between regions. The key idea of the proposed model is to optimize the probability distribution parameters while the segmentation procedure takes place. The experiments in natural and noisy images showed that the proposed model is robust in relation to noise and presents better segmentation results using texturized images than the unsupervised piecewise constant case of Fuzzy Region Competition method.

Published in:

Systems, Man, and Cybernetics (SMC), 2011 IEEE International Conference on

Date of Conference:

9-12 Oct. 2011