By Topic

Using Cyclic Genetic Algorithms to learn gaits for an actual quadruped robot

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Parker, G.B. ; Dept. of Comput. Sci., Connecticut Coll., New London, CT, USA ; Tarimo, W.T.

It is a difficult task to generate optimal walking gaits for mobile legged robots. Generating and coordinating an optimal gait involves continually repeating a series of actions in order to create a sustained movement. In this work, we present the use of a Cyclic Genetic Algorithm (CGA) to learn near optimal gaits for an actual quadruped servo-robot with three degrees of movement per leg. This robot was used to create a simulation model of the movement and states of the robot which included the robot's unique features and capabilities. The CGA used this model to learn gaits that were optimized for this particular robot. Tests done in simulation show the success of the CGA in evolving gait control programs and tests on robot show that these control programs produce reasonable gaits.

Published in:

Systems, Man, and Cybernetics (SMC), 2011 IEEE International Conference on

Date of Conference:

9-12 Oct. 2011