By Topic

Developing a classifier model for lung tumors in CT-scan images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Basu, S. ; Dept. of Comput. Sci. & Eng., Univ. of South Florida, Tampa, FL, USA ; Hall, L.O. ; Goldgof, D.B. ; Yuhua Gu
more authors

A CT-scan is a vital tool for the diagnosis of lung cancer via tumor detection. Developing a classifier to make use of the information in CT-scan images could provide a non-invasive alternative to histopathological techniques such as needle biopsy to identify tumor types. Image features extracted from 74 lung tumor objects of CT-scan images are used in classifying tumor types. Classification is done into two major classes of non-small cell lung tumors, Adenocarcinoma and Squamous-cell Carcinoma, each constituting 30% of all lung tumors. In this first of its kind investigation, a large group of 2D and 3D image features which were hypothesized to be useful are evaluated for effectiveness in classifying the tumors. Classifiers including decision trees and support vector machines are used along with feature selection techniques (Wrappers and Relief-F) to build models for tumor classification. Results show that over the large feature space for both 2D and 3D features it is possible to recognize tumor classes with about 68% accuracy, showing new features may be of help. The accuracy achieved using 2D and 3D features is similar with 3D easier to use.

Published in:

Systems, Man, and Cybernetics (SMC), 2011 IEEE International Conference on

Date of Conference:

9-12 Oct. 2011