By Topic

Fuzzy classification by evolutionary algorithms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Kromer, P. ; Fac. of Electr. Eng. & Comput. Sci., VSB-Tech. Univ. of Ostrava, Ostrava, Czech Republic ; Platos, J. ; Snasel, V. ; Abraham, A.

Fuzzy sets and fuzzy logic can be used for efficient data classification by fuzzy rules and fuzzy classifiers. This paper presents an application of genetic programming to the evolution of fuzzy classifiers based on extended Boolean queries. Extended Boolean queries are well known concept in the area of fuzzy information retrieval. An extended Boolean query represents a complex soft search expression that defines a fuzzy set on the collection of searched documents. We interpret the data mining task as a fuzzy information retrieval problem and we apply a proven method for query induction from data to find useful fuzzy classifiers. The ability of the genetic programming to evolve useful fuzzy classifiers is demonstrated on two use cases in which we detect faulty products in a product processing plant and discover intrusions in a computer network.

Published in:

Systems, Man, and Cybernetics (SMC), 2011 IEEE International Conference on

Date of Conference:

9-12 Oct. 2011