By Topic

A probabilistic approach to spatio-spectral filters optimization in Brain-Computer Interface

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Heung-Il Suk ; Department of Computer Science and Engineering, Korea University, Anam-dong, Seongbuk-ku, Seoul 136-713, Korea ; Seong-Whan Lee

EEG-based motor imagery classification has been widely studied for Brain-Computer Interfaces (BCIs) due to its asynchronous and continuous elicitation and its great potential to many applications. Many research groups have devoted their efforts to either the frequency band selection or optimal spatial filters learning via the Common Spatial Pattern (CSP) algorithm. However, since the spectral filtering and the spatial filtering are generally operated in order in a motor imagery classification system the optimization of the spatial filters and the spectral filters should be considered simultaneously in a unified framework. In this paper, we propose a novel probabilistic approach for the spatio-spectral filters optimization in an EEG-based BCI with a particle-filter algorithm and mutual information between feature vectors and class labels. There are two main contributions of the proposed method. The one is that it finds the optimal frequency bands that maximally discriminate the feature vectors of two classes in terms of an information theoretic approach. The other is that we construct a spectrally-weighted label decision rule by linearly combining the outputs from multiple SVMs, one for each frequency band, with the weight of the corresponding frequency band. From our experiments with two publicly available dataset, we confirm that the proposed method outperforms the other competing methods.

Published in:

Systems, Man, and Cybernetics (SMC), 2011 IEEE International Conference on

Date of Conference:

9-12 Oct. 2011