By Topic

Learning user habits for semi-autonomous navigation using low throughput interfaces

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Xavier Perrin ; Autonomous Systems Laboratory, ETHZ, Zürich, Switzerland ; Francis Colas ; Cédric Pradalier ; Roland Siegwart
more authors

This paper presents a semi-autonomous navigation strategy aimed at the control of assistive devices (e.g. an intelligent wheelchair) using low throughput interfaces. A mobile robot proposes the most probable action, as analyzed from the environment, to a human user who can either accept or reject the proposition. In case of rejection, the robot will propose another action, until both entities agree on what needs to be done. In a known environment, the system infers the intended goal destination based on the first executed actions. Furthermore, we endowed the system with learning capabilities, so as to learn the user habits depending on contextual information (e.g. time of the day or if a phone rings). This additional knowledge allows the robot to anticipate the user intention and propose appropriate actions, or goal destinations.

Published in:

Systems, Man, and Cybernetics (SMC), 2011 IEEE International Conference on

Date of Conference:

9-12 Oct. 2011