By Topic

Benchmarking classification techniques using the Opportunity human activity dataset

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Sagha, H. ; Center for Neuroprosthetics, Ecole Polytech. Fed. de Lausanne (EPFL), Lausanne, Switzerland ; Digumarti, S.T. ; del R Millan, J. ; Chavarriaga, R.
more authors

Human activity recognition is a thriving research field. There are lots of studies in different sub-areas of activity recognition proposing different methods. However, unlike other applications, there is lack of established benchmarking problems for activity recognition. Typically, each research group tests and reports the performance of their algorithms on their own datasets using experimental setups specially conceived for that specific purpose. In this work, we introduce a versatile human activity dataset conceived to fill that void. We illustrate its use by presenting comparative results of different classification techniques, and discuss about several metrics that can be used to assess their performance. Being an initial benchmarking, we expect that the possibility to replicate and outperform the presented results will contribute to further advances in state-of-the-art methods.

Published in:

Systems, Man, and Cybernetics (SMC), 2011 IEEE International Conference on

Date of Conference:

9-12 Oct. 2011