By Topic

Traffic light control in non-stationary environments based on multi agent Q-learning

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

In many urban areas where traffic congestion does not have the peak pattern, conventional traffic signal timing methods does not result in an efficient control. One alternative is to let traffic signal controllers learn how to adjust the lights based on the traffic situation. However this creates a classical non-stationary environment since each controller is adapting to the changes caused by other controllers. In multi-agent learning this is likely to be inefficient and computationally challenging, i.e., the efficiency decreases with the increase in the number of agents (controllers). In this paper, we model a relatively large traffic network as a multi-agent system and use techniques from multi-agent reinforcement learning. In particular, Q-learning is employed, where the average queue length in approaching links is used to estimate states. A parametric representation of the action space has made the method extendable to different types of intersection. The simulation results demonstrate that the proposed Q-learning outperformed the fixed time method under different traffic demands.

Published in:

Intelligent Transportation Systems (ITSC), 2011 14th International IEEE Conference on

Date of Conference:

5-7 Oct. 2011