By Topic

Fast vision based ego-motion estimation from stereo sequences — A GPU approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Istvan, S. ; Tech. Univ. of Cluj-Napoca, Cluj-Napoca, Romania ; Golban, C. ; Nedevschi, S.

Visual odometry has been an important research activity in the last three years. Because the results of ego-motion estimation tasks are used in complex systems which need to work real-time, the motion estimation itself need to perform faster than real-time such that the remaining time slots can be used by other algorithms running on the same hardware. The main contribution of this paper is the implementation of a GPU based method for 3D ego-motion estimation. We identified the visual odometry method that is the best candidate for parallelization and we describe the details of the parallel implementation. We also present different tests performed on various traffic scenes to show the robustness of the method and the performance compared to the sequential implementation.

Published in:

Intelligent Transportation Systems (ITSC), 2011 14th International IEEE Conference on

Date of Conference:

5-7 Oct. 2011