Scheduled System Maintenance:
On Wednesday, July 29th, IEEE Xplore will undergo scheduled maintenance from 7:00-9:00 AM ET (11:00-13:00 UTC). During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Optimal trajectory planning for trains using mixed integer linear programming

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Yihui Wang ; State Key Lab. of Traffic Control & Safety, Beijing Jiaotong Univ., Beijing, China ; De Schutter, B. ; Bin Ning ; Groot, N.
more authors

The optimal trajectory planning for trains under constraints and fixed maximal arrival time is considered. The variable line resistance (including variable grade profile, tunnels, and curves) and arbitrary speed restrictions are included in this approach. The objective function is a trade-off between the energy consumption and the riding comfort. First, the nonlinear train model is approximated by a piece-wise affine model. Next, the optimal control problem is formulated as a mixed integer linear programming (MILP) problem, which can be solved efficiently by existing solvers. The good performance of this approach is demonstrated via a case study.

Published in:

Intelligent Transportation Systems (ITSC), 2011 14th International IEEE Conference on

Date of Conference:

5-7 Oct. 2011