Cart (Loading....) | Create Account
Close category search window

Bias in robust estimation caused by discontinuities and multiple structures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Stewart, C.V. ; Dept. of Comput. Sci., Rensselaer Polytech. Inst., Troy, NY, USA

When fitting models to data containing multiple structures, such as when fitting surface patches to data taken from a neighborhood that includes a range discontinuity, robust estimators must tolerate both gross outliers and pseudo outliers. Pseudo outliers are outliers to the structure of interest, but inliers to a different structure. They differ from gross outliers because of their coherence. Such data occurs frequently in computer vision problems, including motion estimation, model fitting, and range data analysis. The focus in this paper is the problem of fitting surfaces near discontinuities in range data. To characterize the performance of least median of the squares, least trimmed squares, M-estimators, Hough transforms, RANSAC, and MINPRAN on this type of data, the “pseudo outlier bias” metric is developed using techniques from the robust statistics literature, and it is used to study the error in robust fits caused by distributions modeling various types of discontinuities. The results show each robust estimator to be biased at small, but substantial, discontinuities. They also show the circumstances under which different estimators are most effective. Most importantly, the results imply present estimators should be used with care, and new estimators should be developed

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:19 ,  Issue: 8 )

Date of Publication:

Aug 1997

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.